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The flow of liquid from a container limited by infinite plane walls was
first studied by Kirchhoff [1],

Trefftz [2 ] treated the outflow of liquid through a circular orifice
in a plane wall. He constructed an integral equation for the wvelocity
potential, which also included a function determining the form of the jet.
In order to solve this equation he assumed certain forms of jet.

The author determines the velocity potential by numerical methods,
compares it with a known value of the potential at the jet boundary and
selects the form of the jet with the smallest difference.

In this article an integro-differential equation is set up also, which
is solved by successive approximations; meanwhile the form of the Jjet is
determined in the process of solution.

The scheme analyzed is presented in Fig. 1. A liquid flows from a con-
tainer of conical form CBB,C,, confined by infinite walls BC and 31C1'
and produces a jet BDD,B,. The form of the jet and the velocity distri-

bution along the solid wall are to be detemined. Cylindrical coordinates
are used for the solution of this problem.

Coordinates of any arbitrary point are indicated as z, r and coordi-
nates of a point at the surface of the container or the jet as z°, r’.

Equations representing BC and B,C, are:

r=1-—ztgh (BC)
r'=—(1—z"tgh) (BiCy) @

Circles r = r’ are considered, located in a plane z = z”. Vortices run
along every circle. A circulation y(z°)dl’ is associated with an arc
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Fig. 1,

element dl’ along the boundary. This circulation is assumed to be counter-
clockwise in the meridional semiplane. Then the stream function is [3]:

- -]

b1 d
r , N cos ada ’
b= S [r\'(z) P a)]dl (2)
—_— 0
where
o(r iz )=V rr+r?*4+(z—2')2—2rr'cosa
Further
. 1 0 L1 ey
T = gy Te= ()

Along the entire surface v, = 0, therefore
v 4p 0
since dr/dn = dz/dl, dz/dn = ~ dr/dl, therefore
v,dz — v, dr =0, or V,—v; —= (4)

At a sufficient distance from the outlet the value of y(z), which
corresponds to the tangential velocity component, is inversely propor-
tional to the square of the radius of the container in inifinity upstream.
This follows from the discharge continuity condition.

Assume that starting at a point z = z,
ry\2
1(2) =1 (’,.l_> (z=<<z1), Nn=1x() ri=r(z ()
The value y(z) is constant on the surface, and can be taken as unity.

The form of the jet may be assumed practically cylindrical at a certain
distance downstream from the outlet, say, from the point z = z,. Equation
(2) is presented in following fom:

Y=+ Yo+ b (6)
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where
b= _zg'm[rw @) S o (7)
Yo = 4——3 [71 @) 3 | (8)
b= e §° [F1@) S T L4 )

Equations (3) after substitution of (6) will be

1 0 1 /0 a
b= — 2B o L (B T W o oy (10)
LA Ok 0 dbe)
o= 0% = (P T+ D) v v+ e

Abbreviations introduced here are obvious. Equation (4) may be pre-
sented in the form

d
Ulr+vzr+Usr‘—(v12+1’2z+1’3z)7rz:0 (11)

When the radius of the cylinder is o then
rry T cos ada ,
i N ol
z; 0
Zhukovskii [ 4] has shown that such integrals reduce to elliptic inte-
grals of the first, second and third kind.

Thus, integrating in parts for a, changing the order of integration,
and substituting the variable a = 7 + 2¢, we obtain

)

T'.'

2T 0')
. rrg [V cos ada rir,? sin® ada /2
Yy = = S |4z - =
: 4m | o(r, ry, 2, A) 4 e3(r, ro, 2. @)
2y
o
rir,? dz’ .
= | 5in® ada —
47| ed(r,rg, 2z, @)
2y
2

nr?

—— for I <ry

WIS ) (K ) e (K E)]

Zrtn

(12)

41 for r >ry

Here
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n/2 T2
K)‘= g”_'-—_—_%_%—;;, EA:S dch1—)~zsin2<p
0 s od
J=J(=nrN= § (1—nsin’q>)§1-—}\2sin2q> (13)
_ 2Vrrg n— 4
Ve—zp+ ¢ +rp (r + ro?

The formulas (12) substituted into (10) result in

vgr = — 10 (2 30) Ky — 2B, (14)
1

ye — (z—z) X [ry J K J;for r<r, 15

V3, Vo, [ro+r + A]+lo tor ror, (15)

Values K, and E, are to be taken from the table of elliptic integrals.
The complete elliptic integral of the third kind J resolves into partial
elliptical integrals of the first and second kind by the following
formula (4):

V1= 7sin’s , . ™
J(—ny = 0SB g B3y — KaE () + 5] + Ky (16)
where
3 8
' sy dp rosy T a2 o .
F(s)—§ﬁ—_—ﬁ“‘m’ B @) =\de Y T—¥Tsine e g -

Y

n=1—x\?sin2é

Thus, the complete elliptic integral of the third kind J may also be
computed directly from tabulated values of the partial and complete
elliptic integrals of the first and second kind. The radial velocity com-
ponent vy _1is here continuous at the surface of the vortex cylinder, but
has a logarithmic singularity at its edge. The axial velocity component

has a discontinuity on the surface of the cylinder, equal to unity,
an(zl this was to be expected from our assumption. One half of the dis-
continuity appears in the expression vy, in explicit form, while the other
half is included in the term containing J.

As follows from (10), the values ay, /dz and dy,/dr are necessary for
the computation of v, and v, , because

2

b = o~ g {"T(Z)S NTCO’S_%—)]dl'

Z
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therefore

AL _cosada ] o
i §[}”{(z}gp(r r,z,a)]dz-—
2y

___rg [?,?(z)g {r cos & ~ r* cos? a)“]dl’

(r, ", 2z, 1)

= 37-2?1& [ ;fv [(2 k*) Ky — 2Ey ]}dl"w

Zy

— S ["'T (z') S (r cos @ — r’ cos®e) da ] dl’

pt(r, 'y 2, @)

E]

Zy

<

Here K, and E, are complete elliptic integrals of the first and second
kind of modulus
_ 2V rr?
¥ z—2' 2+ {r+r)F

Substituting a = 7 + 2¢, it follows

"/2 7]
{r cos ¢ — r’ cos®n) du =7 S — 2r cos 2pdyp — S 208 2ede

e (r, ', 2, @) e (r. 1.z, 9) pR(r, 7, 2, 9)

-Tt/2 -T/2

=wu§

— (P 'YK b 20k 4 BrhY — 8 Ex+ dr' —(r 4+ 2r) B2 K

rek (4 — )V rr! rek Ve
Then
T N O S e o et ,
= ‘4m§"'<z)iﬁgk 2V rr (1 — &%) E"]*ﬁ -
1 i "
=—,;—S Y (ZYM(z, 2"y dl’ (4n
2y
where

mi(z,r, 2", 1) Ky = [(2" —2)% 4 12 — "3} B

M (z, z') = mEz, r 2’ P Ymiz,—r, 2, F"} (18)
m(z,r, 2r)=V(E —2* + (r —r)?
Similarly there follows

1
v = 5 \ T@)N (2, )l (19)

E4)

where o ., ,

Nc(z, z’) _ mi(z, p, 3 FYKp —[m (5, 1,2 'y L 20 Ey g g 20)

mi{z, r, 2 rym(g,—rz 0} r



Flow of liquid from an axially symmetric container 513

Integrals (17) and (19) are to be solved numerically. Bt the kernel
functions have singularities at z = z° and r = r’. Therefore integrals
(17) and (19) are transformed in the following way:

(21)

z—¢ 24t 23

vezmi’;[ S v (2) M (z, 2')dl + —S_ 1 ()M (z, ) dl+ i @) M (z, 2)dl |

Vo = 2_;_[8 < @) N (z, 2)dl' + § 1 ()N (z, 2')dl + X 1 (Z)N (z, z')dz']
z 22 24

Results of computations are presented, vhere expansions in powers of

k! of the complete elliptic integrals of the first and second kind have
been used in the vicinity of k= 1

z4% 4t 2 - — LS 1 2 21 E
’ ’ ' ’ m(z,r,z,r)Kk [(z 2)+r-—-r l k r
\ 1@ MEnar= | 1@ s dv =
Z—8 L
zZ4t . (z,) (Kk —Ek}Vi T rzrg , z4% ¥ (z;) r (F — ?') Ek V1 N rzlz dz'
By S " dz _2 g 7 2 =
m’(z,-—r,z ,r) m2<z) r,z,r)m(z,—-—r,z',r')
-3 2§
—~ Y (z) Vi + rz‘i cln 8r N z’§‘ v (z,)’,/ (rl_r) EkV-mz,
- r eVigr,® + mi(z, r, 2’ Mym(z,—r 2,0y T
Lo &
Lr@eVitrt 8 @ ay()
; VI Vi T s

Here and in the following pages the minus sign corresponds to the case
r-r’->+ 0, the plus sign corresponds to r - r* » ~ 0; moreover:

r;=dr/dz, r;)/)=dr'[dz (23)
Similarly, there is

3-4-e 46 M 'YK e AN
S'r(z’)zv<z,z')dr=3-§~r<z') e AL e i SRR A L
%

r miz, r,2’, rMymiz,—r, 2, r)
Lo

Z2—€
z+s "~ N
T I O Y () (= "“z)(Kk—‘Ek)V—l-f—rz"
XVIrds =~ \ el 0
Tt
21+‘Y(z')r'(z'“z)EkV1+’z'2dz' Y@er, __ m@r,
—2 | S EmeT T =T e T v @

In virtue of (23) and (24) the relations (21) and (22) may be rewritten
as 1 i
Vor =g5— v.p S Y (' YM (3, 2°) dl'4-

%
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e (2) T3¢ &r r? -—_ x(@®
T 2 [Vi'H’ In Vitre T Vigoe ]—"szrz2 (€)
¢ r@er, _ Y@r,

var = v-pg ()N (z, 2)dl’ — (26)

2 Zﬂch]_—i——r:E ZV]—T—TZ_’

Hence it is evident that v, and v, have discontinuities on the sur-
face of the cone and on the curvilinear part of the jet, equal respect-
ively to y(z) cos B and ~ y(z) sin B; here y(z) = 1 when z > 0, 8= B,
at the surface of the cone, and B is the angle between the tangent to
the jet surface and the z axis on the curvilinear part of the jet.

Finally, v, and vy, are computed. For this d ¢, /3r and 9y /0z are
to be determined, as 1s known from (10), The functlon ¥, allowmg for
(5) is transcribed

23 orn
b — ",]2Y1 g [_1_% cos t:tdoz ]dl,
; A4 rt) o e(r,r, 2 @)
—co 0
then
o 2 9 J
2 1 cos ada
Ae X1 o 2 ﬂ —\ ———— ] dl'—
]'a’. e {u [I'IS p(rrr’vzva)]dl
—00 0
Craf d ¢ ¢ costadadl
e 1 cos ada } ' Sgcosaa
g S [ r S e (r, r’, 2z, @) i’ +r p¥(r, r', z, @)
—oo 0 —00 0,

After some transformations and substitution of a variable r’ = 1~

»

z’ tan B,, remembering that

[T R
V1 + cos B
we obtain
21y 2rn ry
4n a1 _ virr® (rl—a S S dodr’ r? S S cos? adadr’
or ~ cosB {atg B1 (cr'? - br’ + a)? atg B (cr’® 4 br' + a)’s
0 o0 0 oo
Ve bery — 2ac + b?
2r [4 cry — 2ac + ) }
— — =) cosada 27)
+atg51§< A AVerl2+br+a (
where

a=r4 (z—eclgh)?, b=2(z— ctgp, —ctg?B —rcosa),
ry=1-—ztgB, c=14 ctg?p
A= —4[rtcosta + 2r ctg By (ctg By — z) cosa — (1 + ctg?By) r* — (ctg By — 2)*

All integrals included in (27) after some transformations may be re-
solved into elliptic integrals of the first, second and third kind.
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4o 2 o NI 4], 4 BroJ, + DK, — & EJ]—

or — aVrrsinB,

virt¥ern [ (Qa—2r—bm) (2a — 2r*— byxy) .
[ + ] (28;

ar sin 8, (zz__g;l)l/zﬁ__l (s — )Vt —1

Here
5 — 2Vrr
VG 23) + (r + r1)?

—ctg By (ctg By —2) + Ve V (ctg Br— 2 + 2

r

Ty =

_ctg B (ctg By —32) + VeV (ctgpr—z)i+r2

r

To =

D= 2[ctg[31(ctg§1—-z) —r+ %]

_ = (ctg 31— 2) Ve
’ 2r VA(ctrg By —z)2 4 r?

~—

+reetg8 — Ve letgB, —z -+ ryctgB] Vr2 4+ (ctg By — 2)%)

{ctg B, (ctg By — 2)* + ryc(ctg By —z) +

(ctgBi—2)V ¢ .
= » — 2 8 2
B 2V (g Bi— 2P £ 1 {ctgBi(ctg By — 2)* + ric(ctgh — 2) +r? ctg B, 4+

- 1/2 [ctg By —z+4 rictg 3l Ve + (ctg B, — 2)*}

2r
n, = e
L ctg8i(ctgBi—~z) + Ve V{ctgB — 2% + 1t
2r
n2 =

r—clg8i(ctg81—z)—Ve V(ctgB — 2)% + r?
by = 2r ctg B (ctg B — 2)

Here J, and J, are the complete elliptic integrals of the third kind,
that is

s

de

Ji=J(—ny, 0) = e
! 1=, 9) J {1 — ny sin%) ¥ 1 —o? sin’p

Yare
do

I, =J3(—ny, o) = =
2 2 » °) J (1 — ngsin?e) ¥ 1 — o? sin%p

K, and E, are complete elliptic integrals of the first and second kind
of modulus o, see (13).

Two cases are to be distinguished. Results for the function v, are
developed simultaneously,

First case: cot By >z
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Yir's

o=l g b ) P (5 )+ (g B — 9 Qs D+

. 4 et By — 2) e 2 — {
D (5, ) Ky T Eo} nr (f«t? ) - Z) == Y171 ‘(CtE 31. z) (EAH]
a* 48in% Bra’t 4sin? 8o
s
- %—‘—-_,Mw: [rp {z, Y Jy -+ rQ@(z, ry Ty (30)
dn ¥ orrasindy
i {z-—cigt 3 iy %

R A R e L e

’ : Asin®Byn® T 4asin?By

The minus sign in the formula (29) corresponds to | (1~ r}/z | > |
tan B,}, the plus sign to [ {1~ r)/z | <| tan B,]|, but the opposite
holds good in formula (30).

Second case: cot f3; < z

I T
I3 ::—_:1_’.1‘3:%”—”[ By won 2 de fote 3, — 2 » .
ta ke Ve oy (ctg By Yoz i+ (tg {—2)Q (5, M)+

. % Tfa_ oig Tio g
‘E—gi‘:z, ?‘} Rc”’--:; gﬁ}%«Y§Ft {-‘ clig ;:5’#}*7*???‘1 iz ﬁf,ﬁ?);} {3.;}

5 . e 3. - .
42 2 sint 5y 4a *sin® §;

”H‘]Ew .
Py = s | Por{2, PV rQ (z, v J 30
= e e N 0 ) e+ (
¢ . 4 (z —— ('tg {3}} ’ “{}?121‘ pe. ek p
A Dz Ny — 550 F i
1 ( ) ) o2 33 i + 4&“/3 Siﬁ’ %{ . ‘:’Eﬂ‘&SiE}?gz

The minus sign in formulas {31} and (32) corresponds to | {r + 1}/z |
> | tan 3], the plus sign to | (r + 1)/z | < | tanB|, thus

- Ve {ory (et 3y — 2) 4 @ ctg By — [(ctg By — 2) + ry ctg 31} ¥ ac)

I35, Py — =
P Vca-}-[rmctgf_’x;(ctgf&;wz)ﬂﬁz
(s, ) = Fel {ery {otr 3p — 2) + aobg By -+ [{otg By — 2} + rictg By] Vae}

—Vea4fr—setgdi{ctgh—z1Va
i —cty %‘_,l

DRz -2 iretg 8 — (—clgB) 4 SE

Complete elliptic integrals of the third kind resolve into elliptic
integrals of the first and second kind.

It is easy to prove that el g ny, therefore Ji. will be (4) after an
auxiliary angle &, is introduced by the equation n, = 1-0"? minz’dl:

r

(Ko E) P (3) — KB (8) + 5|+ Ko

Vi—g? sin2§,

e FE. A ¢ A U
Jid 19) «'tsin 3, cos §;
Pravious notations are retained here,

The integral J,(~ n,, o) will be also expressed in terms of elliptic
integrals of the first and second kind, In this case an auxiliary angle
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8, is introduced by the equation
—ny = ctg?® & (n, < 0)
We obtain
Jy(—nay 0) = K, sin®dy + [ TN (K, — B F (8) — KoE (83) + |
This formula was proposed by Frankl’. Formulas for J, and J, can be

checked by a solution for the values in parentheses containing partial

elliptical integrals, and by differentiation by the upper limit; see
also (5).

The singularities of the function v, and v,, are to be considered.

1. Yhen cot B, > z. These are two possibilities: a) z2< z,, b) z > 2,.

The extreme values of axial and radial velocity components at the in-
t?rr)lal and external sides of the cone are designated by v; z R vgz) and
1

viy’s v1 . Then, for the case z < z,

‘{1"12 — Yir1? ain P
v — vy = Gocosh, o —old = —5sing,

Ot.hemse, the tangent of the velocity component has a discontinuity
Y4Ty 2/r? on the surface of the cone (for z < z, ), which was to be ex-
pected from our assumption

In the case z > z,, this velocity has no discontinuity, since the
member containing J, in formulas (29) and (30) gives discontinuities equal
in magnitude and opposite in signs to those in explicit fom in formulas
(29) and (30), and they therefore cancel out.

2. When cot B, < z, the tangent of the velocity component has no dis-
continuity, as in the case z > z,.

Hence, v, and v are completely investigated and computed.

Substitution of values v, and v_ into (4) gives the integrodifferential
equation for y(z) and r(z):

Vir -+ Vgr + Vgr — (V12 - ¥y, Usz)

=0 (33)

The solution of the integrodifferential equation determines the form
of the jet and the velocity distribution along the solid wall.

Equation (33) is to be solved approximately.

Computations have been performed below for the case B = 1/4 7. For the
first approximation to the solution of the equation (33) the form of the
Jjet has been taken from the plane problem (1). In this case equation (33)
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is reduced to the integral equation for y(:). After y(:z) is determined,
the form of the jet is computed by a second approximation, and so on.

If 2b is the width of the jet in infinity downstream in the two-dimen-
sional problem, the radius of the jet at infinity in a three-dimensional
problem has a value ry = VZi Then a cylinder of radius ro 1s drawn from
infinity up to the curvilinear part of the jet in the two-dimensional
problem, and this shape of the jet is taken as the first approximation.

The method of solution of equation (33) is as follows: dr/dz = — 1 when
B = 1/4 n, therefore from (33)
Cyp T Vg Vg F Y Ty, F 0y, =0 (34)

Here all terms, except v, and v, ,» are expressed in terms of complete
elliptic integrals of the first, second and third kind, while v, and vy,
contain integrals solved numerically at the points

z=—01, —0.3, —0.5, —0.7, —0.9

The integral equation (34) is solved, as usual, by a system of linear
algebraic equations:

T vy 0.591 o + 0.804 vs + 1.264 v4 + 1.993 5 = 1.361
. 241 1+ 0.790 vz + 1.232 y5 + 1.923 v4 — 0.879 v5 = 0.817
. 691 vy + 1.245 v + 1.870 v3 — 0.939 v4 — 0.583 v = 0.437
. 444 vy —1.828 vy — 0.984 vs— 0.618 v4— 0.272 5 = 0.247
. 236 vy — 1.022 vy — 0.646 v — 0.297 v — 0.155 v5 = 0.168

W W N po o

Approximate solution of this system gives:
Ys =71 (—0.2) = 0.296, v4=(—04)=0.243, v3--v(—0,6)~0,184,
ve=v(—0.8) =0136=v, =y (—1)=0.119
For the form of the jet we have taken as a first approximation:

z=0.0 041 0.2 0.3 0.4 0.5
r(z)=1 0.938 0.8957 0.8690 0.8645 0.8645

y(z) for this form of the jet has been computed:

2=—02 — 0.4 —06 —08 —1.0
v(z) = 0.296; 0.243; 0.184; 0.134; 0.119;

A relationship dr/dz = "r/”z has been used for the second approxima-
tion of the form of the jet:

z=  0.05, 0.15, 0.25 0.35, 0.45
drjdz = —0.4923, —0.3250, --0.2160, —0.1794, —0.0338

therefore from

r.=1 4 \(-Z—:\)dz

z
(1]

the values are
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z == 0.05, 0.15, 0.25, 0.35, 0.45
r(z) =0.9626, 0.9266, 0.8996, 0.8798, 0.8691

Thus, a discharge coefficient of about 0.75 has been found from the
second approximation.
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