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The flow of liquid from a container limited by infinite plane walls was 
first studied by Kirchhoif [ 1 I, 

Trefftz 12 I treated the outflow of liquid through a circular orifice 
in a plane wall. He constructed an integral equation for the velocity 
potential, which also included a function determining the form of the jet. 
In order to solve this equation he assumed certain forms of jet. 

The author determines the velocity potential by numerical methods. 
compares it with a known value of the potential at the jet boundary and 
selects the form of the jet with the smallest difference. 

In this article an integro-differential equation is set up also, which 
is solved by successive approximations; meanwhile the form of the jet is 
determined in the process of solution. 

‘Ihe schme analyzed is presented in Fig. 1. A liquid flows from a con- 

tainer of conical form CBB,C,, confined by infinite walls BC and BICl, 
and produces a jet BDD,B,. ?he form of the jet and the velocity distri- 
bution along the solid wall are to be detenined. Cylindrical coordinates 
are used for the solution of this problem. 

Coordinates of any arbitrary point are indicated as z, r and coordi- 

nates of a point at the surface of the container or the jet as z', r'. 

Equations representing BC and B,C, are: 

r' = 1 - 2’ tg pi (BC) 

r' = -(I -z'tg/&) (Wi) (1) 

Circles r = r' are considered, located in a plane z = z'. Vortices run 

along every circle. A circulation y (z’)dZ’ is associated with an arc 
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Fig. 1. 

element dl’ along the boundary. ‘MS circulation is assuned to be counter- 
clockwise in the meridional semiplane. ‘Ihen the stream function is [ 3 1 : 

where 

p (r r’, 2 CC) = I/+ + r’2 + (2 - z’)B - 2rr’ cos oc 

Further 

(3) 

Along the entire surface vn = 0, therefore 

Cr~+li+=o 

since dr/dn = dz/dl, dz/dn = - dr/dl, therefore 

v&z- vrdr = 0, or vr -- v L 

At a sufficient distance from the outlet the 

dr 
-= 
dz 

0 (4) 

value of y(z), which 
corresponds to the tangential velocity component, is inversely propor- 
tional to the square of the radius of the container in inifinity upstream. 
This follows from the discharge continuity condition. 

Assune that starting at a point z = zi 

lhe value y(z) is constant on the surface, and can be taken as unity. 

lhe form of the jet may be assumed practically cylindrical at a certain 
distance downstream from the outlet, say, from the point z = z2. Equation 
(2) is presented in following form: 

1) = $1 + qfl + ‘;$ (6) 
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where 
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Equations (3) after substitution of (6) will be 

Abbreviations introduced here are obvious. Equation (4) may be pre- 

sented in the fon 

when the radius of the cylinder is rO, then 

Q) 2-t 

q3+’ I[S cos ada 

P (r, ros 2, 4 3 
d.2’ 

2% 0 

Zhukovskii 14 I has shown that such integrals reduce to elliptic inte- 

grals of the first, second and third kind. 

Thus, integrating in parts for a, changing the order of integration, 

and substituting the variable a = R + 24, we obtain 

779 
- 

oG& - 22) 

ZiTn [Cl - n) (Kh -- 4 + + (k’h - &)I + 
4z for r < r. I , or * (12) 
n 

47 for r>ro 

Here 
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n/2 n/2 

Kk = 
1, 

dq 
VI--h2sin2cp ’ 

Eh = 
s 

drg VI - k2 sin2e 

0 0 

w2 

J=J(-n,h)= 
s 

dv 

o (1 - asin2q) V I- A2 sin2 ‘p 

zlfrr, 

A = r/(7, - z# + (r + ro)2 ’ 

4rr, 
n= P 

(7 + r012 

7he formulas (12) substituted into (10) result in 

v3r = -3 [(2 - h2) KA - 2Eh] 

(2 - 22) h 

v3z = 4rc vro 
1 s J+Ki]+ () for 

I 
kfor r<ro 

\ 

r>r 
0 

(13) 

(14) 

(15) 

Values Kx and Ex are to be taken from the table of elliptic integrals. 

Ihe complete elliptic integral of the third kind J resolves into partial 

elliptical integrals of the first and second kind by the following 

fonrmla (4): 

VI - h’2 sin2 8 
J(-nn, ‘)= ).r2sin*cosa [(KA - ~5) F’ (6) - Kd’ (6) + ;] + K,, (16) 

where 

E’ (6) = \ dp vl - A’” sin2 ? 

0 

(h’2= 1 - i.‘) 

n = 1 - Al2 sin2 6 

Thus, the complete elliptic integral of the third kind J may also be 

computed directly from tabulated values of the partial and complete 

elliptic integrals of the first and second kind. ‘lhe radial velocity com- 

ponent v3r is here continuous at the surface of the vortex cylinder, but 

has a logarithnic singularity at its edge. ‘lhe axial velocity component 

has a discontinuity on the surface of the cylinder, equal to unity, 
3 th’ 1s was to be expected from our assunption. &e half of the dis- 

continuity appears in the expression vjs in explicit form, while the other 

half is included in the term containing J. 

As follows from 

the computation of 

(lo), the values ~3 y’~/,/az and d$2/6’r are necessary for 

vzr and v2 z, because 

C& = &- 3 [r/y (2’) 7 p ,zYFaj] dl’ 

21 b ’ ’ 
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therefore 

Here K, and E, are complete elliptic integrals of the first and second 
kind of modulus 

k zv,l;; 
= Y (2 - z’)S + (r + F’)S 

Substituting Q = n + 2r4, it follows 

= &- 5 y (2’) M (21 z’) dl’ 
Zt 

where 

M(z, 2’) = 
ma (z, rs I’, F') K, - [(a’ - Z)a f Fa - F”] I!?, 

ms fz, F, I’, F’) m (z,-r, z”, r’) 

M (2, 7, z’r’) I= 1/(2’ - z)” + (r’ - r)” 

Similarly there follows 

m2 (z, F, z’, rf) K, - fms (2, F, PI’, r’) -#- 2F’Ff E, I’ _ z 

??Sa fZ, F, 2’ F’) Il (Z,--F,Z’,F’) --T-- 
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Integrals (17) and (19) are to be solved nunerically. But the kernel 
functions have singularities at z = z’ and r = r’. ‘lherefore integrals 
(17) snd (19) are transformed in the following way: 

r’S;(d)M(z, z’)dl’+z~17(Z’)M(z, z’)dl’+ 

(21) 
1 

% =g i y(z’)M(z, d)q 

6 I-6 z+= 
Z-S 

’ i 
u2r = s 

[s 
y (2’) N (z, z’) dl’ + 

5 
‘ r (2’) iV (z, z’) dl’ + 1 7 (2’) N (z, z’) dl’ ] 

Zl Z--I. Z-i-E 

Results of computations are presented, where expansions in powers of 
k’ of the complete elliptic integrals of the first and second kind have 
been used in the vicinity of k = 1 

4-t 2-f-t 

5 ~(2’) M (z, z’) dl’ = s 7 w 
mz (2, r, z’, r’) K, - [(z’ - 2)2 + ta - r/2] I;: 

mz (t, r, z’, r’) m (z, -r, z’, r’) 
k dl’ = 

Z--c Z-C 

‘+I y (z') (Kk --E,)i/i f rz’O 
= s mz(z,-r,z’,r’) 

dz, _ 2 Z’s Y fz’) r’ @ - r’) E,+ VI -I- rzt2 d.9 

s mz (2, T, z’, r’) m(z,- r, z’, r‘) Z 
z--c Z-Z 

8r 
sin _ 

r Eli1 i_ PI* + 2 
Z-C 

y(z)r.Vl -t- rza In 8r 
,N 

r EvFp 

I zy @) 72 T “Y (4 
r V 1 + rZz v 3 _t rzy 

Here and in the following pages the minus sign corresponds to the case 
r - r ’ + + 0, the plus sign corresponds to r - r ’ -+. - 0; moreover: 

tz = dr/dz, rrt = dr’j dz’ (23) 
Similarly, there is 

*-t-a z c 

\ 
7 (2’) A’ (z, z’) dl’= 5 

s 
7 (2’) 

(z’-zy:m2(z, r, z’,r’) Kk--(mz (z, r, z’,r‘f+Zr’rJ Ek) 

mz (e, r, z’, r’) m (z,-- r, z’, r’> X 
z-t Z--c 

Z-b Y (2’) (z’ - Z) (Kk - Eh) r/l + rz ‘2 
x 1/l + rz’2dz’ = f \ 

m fz,-r’, z’r’) 
dz’ - 

L Z-S 

-2 
‘+’ y (2’) r’ (z’ 

s 

-z)EkI/l +rz’adz’ Y (z) zrz “Y (z) r+ 
ma (a, r,_z’, r’) m (z,-f, z’, r’) = - r v 1 + rz~ F------- 

VI frz2 (24) 
Z--6 

In virtue of (23) and (24) the relations (21) and 
as 

(22) may be rewritten 
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(25) 

(26) 

Hence it is evident that vzz and vzr have discontinuities on the sur- 

face of the cone and on the curvilinear part of the jet, equal respect- 

ively to y(z) cos /3 and- y(z) sin /3; here y(z) = 1 when z >, 0, B = /3, 

at the surface of the cone, and p is the angle between the tangent to 

the jet surface and the z axis on the curvilinear part of the jet. 

Finally, viz and vfr are computed. For this d $,/ar and d \hI/dz are 
to be detenined, as IS known from (10). The function qbl, allowing for 

(5) is transcribed, 

21 2x 

t!, - _ 
cos ada 

&I - p (r, r’, z, a) 1 dl’ 

then 

After some transformations and substitution of a variable r’ = 1 - 

z’ tan B1, remembering that 

VI + rz’2 - +I 

we obtain 

m )‘I 2a P, 

43 
co9 adadr’ 

ar =$$$(s \ \ (,r~~+!~~~~., -&l \ (Cr’2+b#+af” ’ 
0 00 0 00 

bcrl - 2ac + b2 

A V cr12 f brl + a 
cos ada 

” 

(27) 

where 

a = r* + (2 - (‘I g p,y, 6- 2(z-ctg/31-ctg2/31-rcosa), 

r.1 = 1 - 21 tg B,, c = 1 + ctg2p1 

s =-- - /1 [r2 (YJS’) a + 2r Ctg PI (ctg PI - Z) COS a - (1 f Ctg2Pl) r2 - (ctg PI - Z)“] 

All integrals included i.n (27) after saae transformations may be re- 
solved into elliptic integrals of the first, second and third kind. 
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(28) 

4x @J1 y1m2a 
ar= aVFlsinpl I 'An,.T, + Bn.,J, + DK, - $ E,,] - 

y,r12YCz 

c 

(2n - w-b1q) (2a - 2r2- bpz) - 
ar sin 8, (ZZ - q) v 512 - 1 

+ 

(la - 21) Yr,e - 1 I 

Here 
zv,, 

’ = V/(z - 2,)2 -+ (r + r# 

x1 = 
- Ctg f~l(ctg PI -z)+ i/Z 1/ (ctp fJl- z)~ + re 

r 

.~ 
2 

= _ ctg PI (ctg BI - 2) -t YC V (ctg fh - z)* + r2 
r 

D = 2 
I 
ctgpI(ctgpl--z) - r+ $1 

2 

+I = -(cW1--z)~~ (ctg~,(ctg~ 
2r V (ct,g p1 - z)~ _t r* 

1 -q + w(ctgB1--2) + 

+ '"ctgpl- y-c[ctgpl--z -+ r',ct.gpJ l/r2 +(ctgpl-Zy} 

B= 
(cte B,-- z)v-c 

2r Y(Ctg VI- 2)s + r2 
WgpdCtgPl- z)' + r,c(ctgfd- a)+ r2 ctgp1 + 

-I- I/c (ctg f$ - z + r1 clg $,] CT+ (ctg p1 -z)'> 

2.r 
r/1 = 

r-ctg fJl(ctg PI--z)+ VO V(ctpm' 

2r 

'k? = r - Clg 9l(Ctg $I- 2)--l/F Y(ctg B -z)*+ r* 

bl = 2r ctg PI (ctg /31 - z) 

Here J, and J, are the complete elliptic integrals of the third kind, 
that is 

‘/m 

J , = J, (- n,, a) = 
5 

d9 

u (I- nl sin*ip) V 1 - a2 sin29 

l/G 

Ia=Je(-n*, u)= 
I 

dq 

o (I-- ne sin*?) V 1 - u* sin*9 

KQ and EO are complete elliptic integrals of the first 
of modulus (I, see (13). 

and second kind 

Tm, cases are to be distinguished. Results for the function utr are 

developed sinul taneously. 

First case: cot B1 > z 



clmplate elliptic integrals af &a third kthd resrrlve into elliptic 
inte@2&s of the fkxe sad smd kind, 

It is easy to prow that c2 < aI, therefore J, will be (4) after an 

auxiliary angle 8, is introduced ltry the equation n1 = 1 - or2 Lsin*si: 

Ithe integral J, (- nz I o> will be also expremmd in term rrf elliptic 
integral8 of the firat and second kind, In this case an auxiliolq angle 
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% is introduced by the equation 

-n2 = ctg2 6, (n2 < 0) 

We obtain 

J2 (- n2, a) = K, sin26, + Vrn_8t,to$,, [ (K, - E,) F’ (6,) - K,E (6,) + $-] 

‘Ihis formula was proposed by Frankl’. Formulas for J, and .I, can be 
checked by a solution for the values in parentheses containing partial 
elliptical integrals, and. by differentiation by the upper limit; see 
also (5). 

The singularities of the function v1 r and v1 z are to be considered. 

1. Men cot PI > z. ‘lhese are two possibilities: a) z < zl, b) z > zl. 

‘Ihe extreme values of axial and radial velocity componrs at*,he in- 
ternal and external sides of the cone are designated by vls , v1 z and 

VII,), vi:). lhen, for the case z < z1 

v(l) - u(2) 
12 

= ygcospl, $' -u(2) = 
WI* 1 

1Z 1r 
--pm;, 

Otherwise, the tangent of the velocity component has a discontinuity 

Y1r1*/r2, on the surface of the cone (for z < z1 ), which was to be ex- 
pected from our assumption 

In the case z > zl, this velocity has no discontinuity, since the 
member containing J, in formulas (29) and (30) gives discontinuities equal 
in magnitude and opposite in signs to those in explicit fon in formulas 
(29) and (30), and they therefore cancel out. 

2. Men cot /I1 < z, the tangent of the velocity component has no dis- 
continuity , as in the case z > zl. 

Hence, v z and vr are completely investigated and computed. 

Substitution of values vZ and vr into (4) gives the integrodifferential 
equation for y(z) and r(z): 

v1r + V2r + v3r - @lZ + v2t + u,z,~ = 0 (33) 

‘Ihe solution of the integrodifferential equation determines the form 
of the jet and the velocity distribution along the solid wall. 

Equation (33) is to be solved approximately. 

Computations have been performed below for the case /3 = l/4 n. For the 

first anproximation to the solution of the equation (33) the form of the 

Jet has been taken from the plane problem (1). In this case equation (33) 
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is reduced to the integral equation for y(z). After y(t) is determined, 
the form of the jet is computed by a second approximation, and so on. 

If 2b is the width of the jet in infinity downstream in the two-dimen- 
sional problem. the radius of the jet at infinity in a three-dimensional 
problem has a value r0 = \lb. Then a cylinder of radius r0 is drawn f;om 
infinity UP to the curvilinear part of the jet in the two-dimensional 
problem, and this shape of the jet is taken as the first approximation. 
The method of solution of equation (33) is as follows: dr/ds = - 1 when 
/9 = l/4 R, therefore from (33) 

Z‘Ir i- upr i- vgr + VIZ + z”Lz + URI = 0 (34) 

Here all terms, except vzr and v2 z, are expressed in terms of complete 
elliptic integrals of the first, second and third kind, while vzr and vzz 
contain integrals solved numerically at the points 

2 = -0.1, -0.3, -0.5, -0.7, -0.9 

The integral equirtion (34) is solved, as usual, by a system of linear 
algebraic equations: 

1. 917 y1+ 0.591 -:z + 0.804 y3 + 1.264 y1 + 1.993 yS = 1.361 
2. 241 y1 f 0.790 yz + 1.232 ys + 1.923 y4 - 0.879 y5 = 0.817 
2. 691 y1 + 1.215 yz + 1.870 y3 - 0.939 y4 - 0.583 y5 = 0.437 
3. 444 y1 - 1.828 yz - 0.984 y3 - 0.618 yr - 0.272 y5 = 0.247 
4. 236 y1 - 1.022 yz - 0.646 ya - 0.297 y4 - 0.155 y5 = 0.168 

Approximate solution of this system gives: 

YS=Y (-0.2)-0.296, ~a=:‘(-0,4)=0.2/;3, .I~=.;(-0,6)~0,184, 
‘(2 = y (-0.8) z 0.136=yl = y (- 1) -0.119 

For the form of the jet we have taken as a first approximation: 

2 = 0.0 0.1 0.2 0.3 0.4 0.5 
r (2) = 1 0.938 0.893: 0.8690 0.8643 0.8645 

y(z) for this form of the jet has been computed: 

z = - 0.2 
y (2) = 0.29c; 

A relationship dr/dz 

tion of the form of the 

Z= 0.CJ.i. 

- 0.4 ~~~ 0.G - 0.8 - 1.0 
0.243; 0.184; 0.134; 0.119; 

= vr/vz has been used for the second approxima- 
jet: 

0.1:,, (1.2.; 0.35, 0.45 
clr1d.z = -O./I!J.J:j, -0.32.50, ---0.2160, -0.1794, -0.0338 

therefore from 

I 

r-=I + 

0 

the values are 
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2 = 0.05, 0.15, 0.25, 0.35, 0.45 
r(z)=0.9626, 0.9266, 0.8996, 0.8798, 0.8691 

Thus, a discharge coefficient of about 0.75 has been found from the 
second approximation. 
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